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Abstract. Deep Reinforcement Learning (DRL) is increasingly becom-
ing popular for developing financial trading agents. Nevertheless, the
nature of financial markets to be extremely volatile, in addition to the
difficulty of optimizing DRL agents, lead the agents to make more risky
trades. As a result, while agents can earn higher profits, they are also
vulnerable to significant losses. To evaluate the performance of the finan-
cial trading agent, the Profit and Loss (PnL) is usually calculated, which
is also used as the agent’s reward. However, in addition to PnL, traders
often take into account other aspects of the agent’s behavior, such as the
risk associated with the positions opened by the agent. A widely used
metric that captures the risk-related component of an agent’s perfor-
mance is the Sharpe ratio, which is used to evaluate a portfolio’s risk-
adjusted performance. In this paper, we propose a Sharpe ratio-based
reward shaping approach that enables optimizing DRL agents by tak-
ing into account both PnL and the Sharpe ratio, with the objective to
improve the overall performance of the portfolio, by mitigating the risk
that occurs in the agent’s decisions. The effectiveness of the proposed
method to increase different performance metrics is illustrated using a
dataset provided by Speedlab AG, which contains 14 instruments.

Keywords: Financial Trading · Reward Shaping · Deep Learning · Deep
Reinforcement Learning.

1 Introduction

Using traditional machine learning methods for automated financial trading can
be very challenging. Most of the time, the creation of supervised labels is needed.
In works, such as [14–17], Deep Learning (DL) models were used to predict the
price movement and depending on the direction, a trader is able to make a
decision to either go long or short. However, this task might be challenging be-
cause of the uncertainty of the financial markets. The use of Deep Reinforcement
Learning (DRL) is an efficient way to follow, yet tough, to avoid the limitations
of supervised learning. In works such as [1, 3, 13, 18, 19], a DRL framework was
used to overcome possible restrictions occurring on supervised problems.
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DRL agents for automated financial trading are difficult to be developed
since a carefully designed reward scheme is required [8]. As tasks get more com-
plicated, reward shaping becomes more challenging, while recent applications
have demonstrated that adapting it to the specific domain of its usage may
considerably increase the agents’ performance [10, 11].

There are works that use the Profit and Loss (PnL) as a reward but the agent
doesn’t take into account the risk that often arises in the trades. In addition,
some works also use the Sharpe ratio as a reward, however, sometimes seems
not to work effectively, such as in [21]. In this work, instead of using rewards
that are based only on the agent’s PnL or the Sharpe ratio, we force the agent
to take into account both PnL and the Sharpe ratio in the reward function.

Sharpe ratio was originally mentioned in the 1960s by William F. Sharpe
[5]. It is a measure of the risk-adjusted return of an investment or portfolio and
constitutes one of the most widely used metrics in finance. The Sharpe ratio
is calculated as the average return of an investment minus the risk-free rate of
return, divided by the standard deviation of the investment’s returns. In our
case, the risk-free rate is assumed to be zero as a practical simplification. Keep
in mind that in practice, the risk-free rate is never truly zero. The standard
deviation measures the volatility of the investment’s returns and captures the
idea that higher returns should be associated with higher risk. A higher Sharpe
ratio indicates that an investment has provided a better return for the amount
of risk taken. The Sharpe ratio is used to evaluate the performance of individual
investments as well as portfolios and is a useful metric for comparing different
investment options and helping make investment decisions.

Even though the Sharpe ratio is widely used, currently there is no such work
that takes advantage of it combined with a PnL-based reward, when training
DRL agents. Sharpe ratio is usually calculated as an annualized metric, which
means that in order to be calculated, takes into account the returns over a
long period of time. In practice, the volatility of monthly returns is typically
considered when using the Sharpe ratio, which is generally lower than that of
daily returns, which are in turn less volatile than hourly returns. However, when
training a trading agent, the returns that are available, are hourly sampled, and
normally equal to the number of steps an agent makes in an RL episode. As a
consequence, the existing volatility in an RL episode may be significant.

Our contribution can be summarized as follows. We propose a method to in-
corporate the Sharpe ratio into the training regime of a DRL agent, to mitigate
the risk of the taken action by the agent. Specifically, to overcome the aforemen-
tioned limitations regarding the calculation of the Sharpe ratio, we introduce a
window that dynamically changes its size, by taking into account the returns we
have available inside an RL episode. Thus, we are able to have an approximation
of the Sharpe ratio that can be included in the reward function.

The structure of this paper is as follows. In Section 2 the background is
mentioned along with the proposed method which is introduced and analytically
described. Then the dataset as well as the experimental evaluation are presented
in Section 3. Finally, Section 4 concludes this paper.
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2 Proposed Method

This Section introduces the background related to DRL. The baseline PnL re-
ward is presented, followed by the PnL and Sharpe ratio reward scheme and the
proposed one. All of them are determined and thoroughly explained.

2.1 Background

The DRL setup is briefly described in the next paragraphs. We follow a similar
approach for financial trading that was used in [3, 13].

In financial trading via DRL, the environment provides the agent with an
observation, which consists of features generated from market data as presented
in Section 3.2. Along with the observation, the current market position is pro-
vided, which is denoted as et, where et ∈ {1, 0,−1} = {long, neutral, short}.
The combination of these two, forms the state of the environment, st, at time
t, where time t, specifies the simulation moment in time. The dimensions of the
state are equal to d × T , where d is the number of features and T specifies the
time steps that occurred prior to time t.

Every time t, the agent has the choice to either buy, sell or stay out of the
market, depending on the state, st, that receives from the environment. For every
action, at time t receives a reward, rt. The proposed reward is received by the
position currently held and is compared to two other methods. When the agent
changes the current position held, a commission is paid to make the change. To
make the simulation process easier, we chose a reasonable commission for all the
transactions.

2.2 PnL reward

Rewarding an agent based on the profit of the positions taken is a common
methodology for financial trading with Reinforcement Learning, e.g., [1–3]. This
approach is our base and is also separately tested in this study. The profit-based
reward is defined as:

r
(PnL)
t =


zt, if agent going long
−zt, if agent going short
0, if agent has a neutral position

(1)

where zt is the return change and is defined as:

zt =
pc(t)− pc(t− 1)

pc(t− 1)
(2)

which is also referred to as the change of the close price pc. With the return
definition, the reward of Equation 1 can be written as:

r
(PnL)
t = et · zt (3)
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When the agent changes position is obligated to pay an extra fee. That is
called the commission, in which case an additional reward is formulated as:

r
(fee)
t = −c · |et − et−1| (4)

where c denotes the commission. The total PnL reward can be defined as:

r
(total)
t = r

(PnL)
t + r

(fee)
t (5)

2.3 PnL and Sharpe ratio reward

As discussed previously, the Sharpe ratio is a metric that is usually calculated
annually. However, in our study, we propose to include it in the reward as an
approximation, in every RL episode. That means that we calculate it over a
short period of time.

Let m be the number of time steps that an episode consists of. We introduce
a window, let w be the window, over the period of m steps, which increases
its size dynamically. The agent, in order to calculate the approximation of the
Sharpe ratio, will take into consideration the trades that took place in the last
m/2 steps, and in each step, its size grows, up to m. Reward, based on the
approximated Sharpe ratio is defined as:

r
(sr)
t =

E[z]√
V ar[z]

· α t ∈ {w, .....,m}, z = (z0, ...., zt) (6)

where w = m/2, z is a vector with the returns as defined in Equation 2, and α
is a constant value, typically less than 1, that can be adjusted and influence the
agent’s behavior. PnL rewards are normally in a very small range. Multiplying
the approximated Sharpe ratio reward in Equation 6, with a scale factor less
than 1, we avoid overpowering the PnL reward. The total PnL and Sharpe ratio
reward is defined as:

r
(total)
t =

{
r
(PnL)
t + r

(fee)
t , t < w

r
(PnL)
t + r

(fee)
t + r

(sr)
t , for t ≥ w

(7)

2.4 Proposed reward

The proposed Sharpe ratio-based reward shaping scheme allows for training
agents that handle the risk taken in every transaction, significantly improv-
ing their risk-adjusted performance and the total profits, as it is experimentally
illustrated in Section 3. The total reward of the proposed scheme is defined as:

r
(total)
t =


r
(PnL)
t + r

(fee)
t , t < w

r
(PnL)
t + r

(fee)
t + r

(sr)
t , for t = w

r
(PnL)
t + r

(fee)
t + r

(sr)
t , if r

(sr)
t > r

(sr)
t−1 for t > w

r
(PnL)
t + r

(fee)
t − r

(sr)
t , if r

(sr)
t < r

(sr)
t−1 for t > w

(8)
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The objective in Equation 8 is to achieve a higher Sharpe ratio in each step.
For this reason, we compare the approximated Sharpe ratio from two consecu-
tive steps. If we achieve a higher Sharpe ratio in the current step compared to
the prior one, we enhance the agent by adding this value to the PnL reward,
otherwise, we penalize the agent by subtracting the approximated Sharpe ratio.

3 Experimental Evaluation

The DRL setup is briefly described in this Section. In addition, the dataset
used to run the simulation that interacts with the RL agents is presented. The
impact of the proposed reward shaping is then evaluated and compared to the
two reward schemes from Sections 2.2 and 2.3. The number of steps that an RL
episode consists of is equal to 100. Since we have hourly candles, as is analytically
described in Section 3.2, the agent is trained for approximately 4 days in each
episode. The constant value α in Equation 6 is set to 0.01. Each experiment
is executed 10 times, with each instance using a different random seed. The
PnLs presented, were averaged throughout the 10 experiments as well as the
annualized Sharpe ratios.

3.1 DRL setup

The RL agent is trained using the Policy Gradient (PG) approach. More specif-
ically, Proximal Policy Optimization (PPO) [4]. In addition, the neural network
architecture is Long-Short Term Memory (LSTM)-based [6]. Finally, the loss
was proposed in [7] for estimating the advantage from the temporal difference
residual, and the optimizer used is Rectified Adam (RAdam) and was intro-
duced in [9]. It is worth noting that the proposed method is not restricted to the
aforementioned architecture.

3.2 Dataset

The proposed method was tested on a financial dataset that included Crypto
trading data of 14 currency pairs such as the BTC/BUSD, BTC/USDT, and
ETH/USDT among others. The Open-High-Low-Close (OHLC) price level tech-
nique was used to subsample the market data [20], which reduces the raw data
into 4 values. The dataset consists of minute price candles gathered by SpeedLab
AG from 2017-08-17 up to 2022-02-12.

To utilize the dataset, the minute-price candles are resampled to hour candles.
More specifically, these values are the open price or the first traded price of the
set interval, the highest and lowest traded prices within the interval, and finally,
the last price that a trade did occur during the interval, also referred to as the
close price. The following features are inspired by [12] and were created using
the OHLC values:
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1. xt,1 =
pc(t)− pc(t− 1)

pc(t− 1)
4. xt,4 =

ph(t)− pc(t)

pc(t)

2. xt,2 =
ph(t)− ph(t− 1)

ph(t− 1)
5. xt,5 =

pc(t)− pl(t)

pc(t)

3. xt,3 =
pl(t)− pl(t− 1)

pl(t− 1)

where pc(t) is the close price that occurred during an interval at time t and
ph(t), pl(t) are the high and low prices within the same interval, respectively.
Additionally, time-related features are created, including day, month, week, and
year features. Note that xt,1 denotes the return as specified in Section 2.2 in
Equation 2. The described features are concatenated into a feature vector xt for
each time t.

The dataset was divided into two parts, a training set, and a test set, with the
training set spanning from the start of each instrument’s period to 2021-03-15,
and the test set ranging from there to 2022-02-12. In total, the dataset contains
439.737 candles, where the train/test candles are 327.596 and 112.141 candles,
respectively.

3.3 Annualized Sharpe ratio

The Sharpe ratio is used to compare the return of an investment with its risk
and provides an insight that returns over a period of time may indicate volatility
and risk. Let z be a vector with the hourly returns over the test period, since our
dataset consists of hour candles as described in Section 3.2. When calculating the
annualized Sharpe ratio using monthly returns, z is resampled to the frequency
of 1 month and it is defined as:

srmann =
E[zm]√
V ar[zm]

×
√
12 (9)

where E[zm],
√
V ar[zm] are the mean and the standard deviation of the re-

sampled monthly returns, respectively. We multiply by the square root of 12 to
annualize the Sharpe ratio. In the same manner, we calculate the annualized
Sharpe ratio from the hourly returns. This time, there is no need for resampling
since the returns are in the frequency of hours. It can be formulated as:

srhann =
E[zh]√
V ar[zh]

×
√
8640 (10)

where E[zh] is the mean of the hourly returns and
√
V ar[zh] the standard devi-

ation. In order to annualize the Sharpe ratio, we multiply by
√
8640 since there

are approximately 8640 trading hours in a year for Crypto currencies.
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3.4 Proposed reward evaluation

In Table 1, it is clearly shown from the annualized Sharpe ratio, that agents
trained with the proposed reward scheme, outperform the baseline PnL-based
reward and the PnL with the added Sharpe ratio since the greater a portfolio’s
Sharpe ratio, the better its risk-adjusted performance.

In addition, in Table 1, the annualized Sharpe ratio from hourly returns
is presented. In practice, it is not a usual phenomenon since the volatility of
the hourly returns is typically greater than the monthly returns. However, we
consider that it is worth to be also calculated since in the proposed reward, we
calculate the approximated Sharpe ratio from the hourly returns.

Table 1. Backtesting Annualized Sharpe Ratio.

Reward type srmann srhann

PnL 1.462 ± 0.055 2.374 ± 0.079
PnL + Sharpe ratio 1.499 ± 0.060 2.484 ± 0.090
Proposed 1.617 ± 0.056 2.641 ± 0.083

In Figure 1, the cumulative PnL is depicted, comparing the profits achieved
from the three different reward schemes that were described in Sections 2.2, 2.3,
and 2.4 respectively. The standard deviation of the PnL is also demonstrated for
the three agents, to illustrate the statistical significance of the obtained results.

Fig. 1. Mean performance across 14 Cryptocurrency pairs of an agent trained with
proposed reward vs. PnL vs. PnL + Sharpe ratio. The y-axis represents the cumulative
Profit and Loss (PnL), while the x-axis represents the date.
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4 Conclusion

In this work, a sharpe ratio-based reward shaping scheme was presented that was
utilized in a Deep Reinforcement Learning (DRL) approach for training agents
that are capable of trading profitably by boosting the risk-adjusted returns. The
most notable contribution of this work is the introduction of a reward shaping
scheme for decreasing the risk that often occurs in agents’ trading decisions. The
suggested scheme utilizes an approximation of the Sharpe ratio as an additional
term to the Profit and Loss (PnL)-based reward, which motivates the agent
to avoid trades that could incur losses. It was demonstrated through extensive
experiments that using the proposed scheme can increase the profit and the
overall portfolio performance with increased both PnL and the Sharpe ratio. To
the best of our knowledge, this is the first attempt to use PnL and the Sharpe
ratio as a reward function in financial trading with DRL.
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