Computational Intelligence and Deep Learning Group (CIDL) AIIA Lab, Dept. of Informatics, Aristotle University of Thessaloniki

> & Datascouting, Greece

DATASCOUTING

CRYPTOSENTIMENT: A DATASET AND BASELINE FOR SENTIMENT-AWARE DEEP REINFORCEMENT LEARNING FOR FINANCIAL TRADING

Loukia Avramelou, Paraskevi Nousi, Nikolaos Passalis, Stavros Doropoulos, Anastasios Tefas Introduction

CryptoSentiment Dataset

Deep Reinforcement Learning Pipeline

Experimental Evaluation

Conclusions

Introduction

- **Financial Trading** refers to purchasing and selling financial assets for profit.
- Financial assets can be stocks, cryptocurrencies assets etc.
- Predicting financial market activity allows achieving **profitable** trades.

- Automated Financial Trading is the task in which algorithms perform financial trading actions without the involvement of humans.
- **Deep Learning** models have provide a variety of approaches that focus in these kind of tasks.
- Deep Supervised Learning and Deep Reinforcement Learning techniques are used mainly for automated financial trading.

- Most deep learning models use only **price**-related features.
- Sentiment features, reflecting the public opinion about financial assets, have positive impact in models performance.
- This kind of information can be extracted from **online articles** or **social media platforms**.

- We provide a publicly available dataset: CryptoSentiment containing fine-grained sentiment analysis data about cryptocurrency market collected by different online sources.
- 2. We investigate whether using **sentiment information** is **advantageous** for training deep reinforcement learning agents for cryptocurrency trading.

CryptoSentiment Dataset

• Text examples have been collected based on **keywords** related to cryptocurrency from various online sources, such as online articles and social media platforms.

 Table 1: Example of cryptocurrencies along with keywords used in the collection of text from online sources

Cryptocurrency	Keywords	
XRPUSDT	'Ripple', 'XRP', 'Chris Larsen', 'Jed McCaleb'	
BTCUSDT	'Bitcoin', 'BTC', 'XBT', 'Satoshi Nakamoto'	
ETHUSDT	'Ethereum', 'ETH', 'Vitalik Buterin'	
EOSUSDT	'EOS.IO', 'EOS', 'Dan Larimer'	
NEOUSDT	'NEO', 'Da Hongfei', 'Erik Zhang'	
XMRUSDT	'Monero', 'XMR', 'Monero Core Team'	
XLMUSDT	'Stellar', 'XLM', 'Jed McCaleb'	

- Text samples are passed from FinBERT sentiment analyzer.
- **FinBERT** is a pre-trained sentiment analysis model based on BERT.
- General sentiment analyzers often can't generalize in domainspecific tasks with complex vocabulary, such as finance, medical or law.
- It is trained using financial news and predicts 3-class sentiment labels (positive, neutral, negative)

- Sentiment score is calculated as : $s = o_p o_n$
- Positive text -> 1 / Neutral text -> 0 / Negative text -> -1
- **235,907** sentiment scores for 14 different cryptocurrencies gathered from various online sources, such as news articles and social media, that exceed the 3,000,000 documents from 17-08-2017 to 12-02-2022.
- \cdot We extracted text documents from more than 30 online sources.

CRYPTOSENTIMENT DATASET

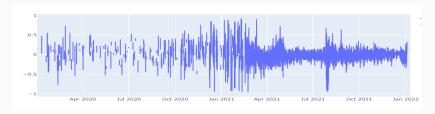


Figure 1: Sentiment values from 2020 to 2022.

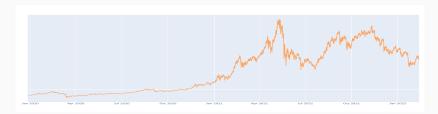


Figure 2: BTC price data from 2020 to 2022.

Deep Reinforcement Learning Pipeline

Pipeline

- A Long Short Term Memory (LSTM) model with Proximal Policy Optimization is used.
- **Profit and Loss** (PnL) metric is used as agent reward and it is calculated as:

$$PnL = \sum_{t=1}^{N} \delta_t p_t - |\delta_t - \delta_{t-1}|c, \qquad (1)$$

where N denotes the total duration of the back-testing period (number of time-steps), p_t is the return at time step t, c is the commission paid for realizing profits/losses and δ_t is an index variable used to indicate the current position, which is defined as:

 $\delta_{t} = \begin{cases} -1, \text{ if agent holds a short position at time-step t} \\ 1, \text{ if agent holds a long position at time-step t} \\ 0, \text{ if the agent is not in the market at time-step t} \end{cases}$ (2)

- As features, we use price features, such as percentage differences and volatility of high, close and low prices, sentiment score and time features in order to encode time.
- We used data from 14 cryptocurrency USDT pairs, XRPUSDT, BTCUSDT, ETHUSDT, EOSUSDT, ADAUSDT, NEOUSDT, TRXUSDT, XMRUSDT, XLMUSDT, WAVESUSDT, ETCUSDT, VETUSDT, BTCBUSDT, ATOMUSDT

Experimental Evaluation

- The DRL agent is a LSTM model of 32 neurons followed with a 3 neurons actor and critic with dropout probability set to 0.2.
- Learning rate is initialized as $5 * 10^{-5}$ and commission punishment is set to $2 * 10^{-5}$.
- The optimizer used was RAdam Optimizer.
- We used data before 25-07-2021 for training and data from 25-07-2021 to 12-02-2022 for testing.
- PnL metric is used for evaluation of agent's performance.

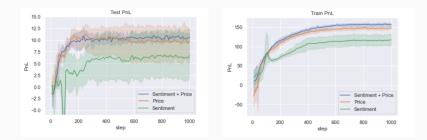



Table 2: Mean train and test PnL after DRL agent training

	Test PnL	Train PnL
Sentiment-only	6.69 ± 6.43	116.92 ± 20.58
Price only	6.69 ± 6.43 9.68 ± 4.93	149.08 ± 5.37
Price + Sentiment	10.55 ± 1.16	$\textbf{156.68} \pm \textbf{5.38}$

Figure 3: Test and train Pnl during DRL agent training. Features that are used are only - price features. Every different curve represent a different run

Figure 4: Test and train Pnl during DRL agent training. Features that are used are price - sentiment features. Every different curve represent a different run

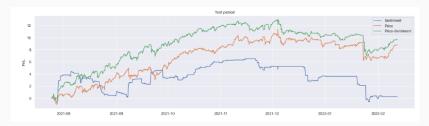


Figure 5: Agents behavior during test period.

Conclusions

- We provided a dataset of sentiment scores that represent public opinion of cryptocurrencies from online sources.
- We investigated the impact of sentiment information in training of DRL agents for financial trading.

This work has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (project code: T2EDK-02094).

DeepFinance

Ευρωπαϊκή Ένωση Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΕΙΔΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΤΠΑ & ΤΣ ΒΙΔΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΝΤΟΥΒΑΤΑΥΚ

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Thank you! Any Questions?