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Financial Timeseries
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Timeseries

● A series of data points indexed in time order
● Commonly taken at a predefined frequency, i.e., equally spaced points in time

○ E.g. at second, minute, hourly intervals
● Tasks involving timeseries data:

○ Exploratory analysis, e.g., correlation to examine dependence, spectral analysis to examine 
frequency content and periodicities, decomposition

○ Curve fitting, i.e., finding a curve that best fits the data, such as exponential, linear etc.
○ Forecasting
○ Classification

● Stationarity is an important aspect in timeseries analysis
○ Do the statistics of a timeseries remain more or less the same throughout its duration? 
○ This simplifies most aspects of the analysis
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Timeseries

● Univariate
○ Single variable - 1 feature in terms of NNs

● Multivariate
○ Multiple variables - multiple features at each time step
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Financial Timeseries

● What’s special about financial timeseries
○ Mostly non-stationary
○ Wide variation in the prices of different assets

● Predicting trends in financial markets allows for making profitable trades
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Financial Timeseries

● A limit order is a type of order to buy or sell a specific number of shares within 
a set price

○ E.g., a sell limit order (ask) of $10 with volume 100 indicates that the seller wishes to sell the 
100 shares for no less than $10 a piece

○ respectively , a buy limit order (bid) of $10 means that the buyer wishes to buy a specified 
amount of shares for no more than $10 each

● Two sides: ask and bid
○ Multivariate timeseries for each side: one for price, one for volume
○ Bid prices are sorted in descending order
○ Ask prices are sorted in ascending order

● Whenever a bid order price exceeds an ask order price an order is executed
● Time steps can be uneven

Limit Order Book Data
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Financial Timeseries

● Tasks involving LOB data
○ Prediction of price trend
○ Regression of the future value of a metric

■ E.g., volatility
○ Anomaly detection, that can cause price 

jumps

Limit Order Book Data
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Financial Timeseries

● Open-High-Low-Close candles are a subsampling technique
○ For a predefined duration (e.g., 1 minute or hour) gather price values and keep the following 

four:
■ Open: the first (time-wise) price
■ High: the highest price within this duration
■ Low: the lowest price within this duration
■ Close: the last (time-wise) price

○ Can be extracted from LOB data as well
● Preserves trend features
● Removes microstructure information

OHLC Candle data
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Financial Timeseries
OHLC Candle data
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Financial Timeseries

● Normalize data to be fed to neural networks
● Z-score normalization

● Min-max normalization

● But! Data is non-stationary

Normalization
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Advances in Supervised Learning
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Regression & Classification

● Regression: predicting real-valued targets
○ Such as the price of an asset in the following time steps

■ Difficult to solve, models tend to degrade to a moving average filter

● Classification: categorization into predefined labels
○ Such as price trend, i.e., upwards, downwards or no change
○ Requires quantization of the real-valued target (i.e., thresholding)
○ Is easier to solve than actual price regression
○ But quantization:

■ Is handcrafted (typically)
■ Leads to imbalanced training sets
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DL Architectures

● The most basic form of neural network that allows to utilize all the inputs
○ Can overfit easily

Multilayer Perceptron
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DL Architectures

● Local connections, shared weights, based on the concept of convolution

Convolutional Neural Networks
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DL Architectures

● Input: univariate timeseries with window size 8

● Convolutional layer with k=2, s=2

Convolutional Neural Networks
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DL Architectures

● Convolutional layer with k=3, s=2

Convolutional Neural Networks
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DL Architectures

● Convolutional + max pooling layer with k=2, s=2

Convolutional Neural Networks
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DL Architectures

● Multivariate input
● Conv with k=2, s=1, d=4
● Max with k=2, s=2
● Conv with k=2, s=1

Convolutional Neural Networks
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DL Architectures

● Recurrent neural networks specialize in analyzing time-series/temporal data
● Embedded memory to augment the ability to remember past events that have 

an effect on the future
● Prone to vanishing and exploding gradients

Long Short-Term Memory Networks
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DL Architectures

● LSTM: Architectural improvements upon the simple RNN to solve learning 
problems

● A common LSTM unit is composed of a cell, an input gate, an output gate and 
a forget gate

○ The cell remembers values over arbitrary time intervals
○ The three gates regulate the flow of information in and out of the cell

Long Short-Term Memory Networks
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DL Architectures

● In the first step the forget gate looks 
at ht−1 and xt to compute the output ft 
which is a number between 0 and 1

● This is multiplied by the cell state Ct−1 
and yield the cell to either forget 
everything or keep the information

○ E.g., a value of 0.5 means that the cell 
forgets 50% of its information

● In the next step the input gate is 
computing the update for the cell by 
first multiplying the outputs it and Ct 
and then adding this output to the 
input Ct−1∗ft

● Finally the output value is computed 
by multiplying ot with the tanh of the 
result of the previous step

Long Short-Term Memory Networks
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Recent Advances

● Financial data tend to be high-dimensionality, velocity and variety
● The Bag-of-Features model tackles these issues

○ Extracting histograms of data based on learned codewords
● Novel differentiable Temporal BoF formulation that can be used in 

combination with any NN
○ Adaptive scaling mechanism
○ Logistic kernel instead of Gaussian-based density estimation

Temporal logistic neural bag-of-features for financial time series forecasting leveraging limit order book data
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Recent Advances

● Step 0 is to define codewords
○ Typically k-means or selection
○ In this case: convolutional weights that are learnable

● Step 1 is to extract high level features for each time step
○ Using for example a CNN

● Step 2 is to compute similarities between features and codewords
○ Using a sigmoid kernel, fully differentiable

● Step 3 is to normalize similarities
● Step 4 is to aggregate to extract histograms

Temporal logistic neural bag-of-features for financial time series forecasting leveraging limit order book data
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Recent Advances

● Three temporal horizons, long-, mid-, short- term

Temporal logistic neural bag-of-features for financial time series forecasting leveraging limit order book data
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Recent Advances

● The normalization in steps 3, 4 can prohibit the smooth flow of information 
both in the forward and backward pass

● Adaptive scaling of learned similarities and histograms leads to faster 
convergence

Temporal logistic neural bag-of-features for financial time series forecasting leveraging limit order book data
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Recent Advances

● Applied to Limit Order Book data

Temporal logistic neural bag-of-features for financial time series forecasting leveraging limit order book data
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Recent Advances

● Learnable adaptive normalization 
method

○ Can learn to identify the distribution 
from which the input data were 
generated and then apply the most 
appropriate normalization scheme 

○ Operates on a sliding window over the 
time series allowing for overcoming 
nonstationary issues 

Forecasting financial time series using robust deep adaptive input normalization
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Recent Advances

● First shifting and then scaling data
● Equivalent to static sample-based z-score normalization when

● Since data is very non-stationary using static values is not optimal
● Instead we learn shift and scale values based on our input data

● Compute summary representation                       then shift by 
● Compute standard deviation of features and then scale by 

● Finally attention-like gating:

Forecasting financial time series using robust deep adaptive input normalization

30



Recent Advances

● First step before any NN architecture

Forecasting financial time series using robust deep adaptive input normalization
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Recent Advances

● Trading strategies are used to manage investments in the market
● Sometimes based on human emotions/intuition/decisions
● Can DL models learn to - not just blindly mimic - but extract knowledge about 

the strategy without knowing what it is?

Transferring trading strategy knowledge to deep learning models

Causal Convolution
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Recent Advances

● Proposed features from OHLC data
● Handcrafted features that are stationary

Transferring trading strategy knowledge to deep learning models
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Recent Advances

● Noisy nature of the data can often cause considerably different behaviors 
between DL models

○ despite following the same training process, model architecture, and hyper-parameters
● Methods proposed for generating the training labels can sometimes further 

reinforce such issues
● Ensemble-based online distillation method that can significantly reduce 

training instability
● In contrast to offline distillation approaches, the proposed method works in a 

single step

Online Knowledge Distillation for Financial Timeseries Forecasting
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Recent Advances

● The same data 
batch is given to 
the teachers and 
students 

● The probability 
distribution of all 
teachers gets 
averaged to to 
form the soft 
labels of the 
teachers 
ensemble

Online Knowledge Distillation for Financial Timeseries Forecasting
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Recent Advances

● Faster convergence than baseline (offline) distillation
● And faster and more stable training training

Online Knowledge Distillation for Financial Timeseries Forecasting
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Adding Sentiment Information to the models
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Recent Advances

● Sentiment harvesting pipelines can be difficult to implement
● Proposed a method that can exploit sentiment information as a source of 

additional supervision during training
● Allowing the trained agent to operate under partial observability

○ I.e., even when sentiment information isn’t available during deployment

Sentiment-Aware Distillation for Bitcoin Trend Forecasting Under Partial Observability
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Recent Advances

● Until recently, DL models for financial trading have mostly ignored 
sentiment-related information

● Examining whether the use of sentiment information, as extracted by various 
online sources, including news articles, is beneficial when training DL agents 
for trading

● Proposed a multi-source sentiment fusion approach that can improve the 
performance over the rest of the evaluated approaches

Multisource financial sentiment analysis for detecting Bitcoin price change indications using deep learning
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Recent Advances
Multisource financial sentiment analysis for detecting Bitcoin price change indications using deep learning
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Recent Advances

● Extensive evaluation on several different NN models like MLPs, CNNs and 
RNNs

● Sentiment information might actually be a stronger predictor compared to the 
information provided by the actual price time-series

○ For BitCoin

Learning sentiment-aware trading strategies for bitcoin leveraging deep learning-based financial news analysis
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Recent Advances
Learning sentiment-aware trading strategies for bitcoin leveraging deep learning-based financial news analysis

This result demonstrates that 
sentiment-information for cryptocurrencies,
such as Bitcoin, might actually be a stronger 
predictor of its future behavior
compared to the information provided by the 
price time-series
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Recent Advances
Learning sentiment-aware trading strategies for bitcoin leveraging deep learning-based financial news analysis

But also, 300 neurons leads 
to overfitting without price 
information
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