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Introduction I

Econometrics:

Applied statistics & probability theory & stochastics, for the study of
economic phenomena (Ragnar, 1933).

The probabilistic dimension is an innate and essential element in
modeling.

Machine Learning (ML):

Flexible, scalable and with proven predictive gains. (e.g. Dixon,
Halperin, and Bilokon, 2020) gained much attention (e.g. Varian,
2014).

Fit well the complexity of modern financial markets.
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Introduction II

Yet:

Traditional ML methods lack of the probabilistic dimension typical of
econometric modelling.

Business and financial applications are high-risk domains where
quantifying the uncertainty of estimates and predictions is of utmost
importance (Salinas et al., 2020; Makridakis, Hogarth, and Gaba,
2009).

Enabling a probabilistic dimension in ML extends the set of available
tools for e.g. model diagnostic, inference (Dixon, Halperin, and
Bilokon, 2020).
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Introduction III

Main point:

Bayesian Deep Learning (DL) constitute a natural direction.

Narrow the gap between the highly-probabilistic econometric practice,
and the flexible non-parametric and highly non-linear and ML
rationale.

This paper:

First Bayesian DL econometric application in predicting mid-price
movements in Limit Order Book (LOB) markets.

Bayesian version of the Temporal Attention-augmented Bilinear
network for a financial times-series classification.

Investigate advantages/insights provided by the Bayesian approach.
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Model, Bayesian Neural Network (BNN) I

A BNN is any stochastic Artificial Neural Network (ANN) trained
using Bayesian inference:

θ ∼ p(θ),

y = NNθ(x) + ϵ,

p(θ |D) =
p(Dy |Dx ,θ)p(θ)∫
Θ p(Dy |Dx ,θ)p(θ)

∝ p(Dy |Dx ,θ)p(θ).

From the posterior distribution, the forecast’s uncertainty is
quantified as the marginal probability distribution of the output yi for
a certain input xi , through the predictive distribution:

p(yi |xi ,D) =

∫
p(yi |xi , θ)p(θ|D)dθ.
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Model, BNN II

For classification, the average model prediction approximates the
relative probability of each class (c):

p̂ic ≈ 1/Ns
∑Ns

n=1 p
(
yi = c |xi , θ(n)

)
, θ(n)∼ p(θ|D),

with n = 1, . . . ,Ns .

If the cost of giving a false positive is equal across all the classes, the
final label is that of the most likely class:

ŷi = max
c

p̂ic .
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Model, TABL I

The Temporal Attention-augmented Bilinear Network (TABL) (Tran et al.,
2019) is a light-weight DL model, suited for multidimensional time-series
forecasting:

→ It maps a D × T input matrix X onto a D ′ × T ′ output matrix Y.

How:

i Operates a projection of the temporal dimension of the input to a
D ′ × T feature space modeling the dependence on the first mode
while preserving the temporal order of the features.

ii Learns the relative importance of the temporal instances producing an
attention mask.

iii A learnable scalar drives the mixture of the temporal and
non-temporal features.
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Model, TABL II

This is achieved by:

X̄ = W1X

E = X̄W

aij = exp(eij)/
∑T

k=1 exp(eik)

X̃ = λ(X̄⊙ A) + (1− λ)X̄

Y = ϕ(X̃W2 + B)
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Bayesian TABL I

Parameter vector θ = {W,W1,W2,B, λ}.
Tackle the Bayesian inference problem under a (mean-field, fixed)
Variational Inference framework:

p(θ) = N (θ|0, I/α), q(θ) = N
(
θ|µ, diag

(
σ2

))
,

where α > 0, µ ∈ RP , σ2 ∈ RP , P the number of the parameters.

The variational parameters
(
µ,σ2

)
are obtained by optimizing:

L
(
µ,σ2

)
=

N∑
i=1

Eq [log p(D|θ)] + Eq

[
log

p(θ)

q(θ)

]
. (1)

Maximized with the gradient-based optimization:

µt+1 = µt + ρt∇µLt and σt+1 = σt + δt∇σLt .
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Bayesian TABL II, NGVI

We use the natural-gradient VI approach of Khan and Lin, 2017:

µt+1 = µt − βt(g(θt) + α̃µt)/(st+1 + α̃),

st+1 = (1− βt)st + βtdiag(H(θt)).

Where,

The objective (1) is expressed in terms of the standard MLE objective
f (θ) = −1/N

∑N
i=1 log p(Di |θ).

The gradients of (1) with respect to µ and σ now involve the
gradient g(θ) and Hessian H(θ) of f (θ).

θt∼N
(
µt , diag

(
σ2
t

))
, σ2

t=[N(st + α̃)]−1, α̃ = α/N.
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Bayesian TABL III, VOGN

Non-negativity of the Hessian is granted by the following
approximation:

∇2
θjθj

f (θ) ≈ 1

M

∑
i∈M

[
∇θj fi (θ)

]2
:= ĥj(θ).

Then the VOGN update for st reads:

st+1 = (1− βt)st + βt ĥ(θt).

Good empirical performance, is of practical feasibility on large
datasets and relatively simple to implement over existing libraries
(Osawa et al., 2019).
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Data I

Finnish LOB dataset (Ntakaris et al., 2019):

NASDAQ Nordic Helsinki exchange from June 1 to June 14, 2010
(≈ 4.5 million events).

144-dimensional feature vectors, at each epoch.

75%-10%-15% split for training, validation and test sets, same setup
as Tsantekidis et al., 2017.

Train and compare VOGN, ADAM, MC Dropout, and SGD.
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Data II
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Figure: Snapshot of the LOB data (ticker: KESKO B.)
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Learning Curves I
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Figure: Learning curves for VOGN and ADAM on the training and validation sets
(upper and lower panel, respectively).
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Learning Curves II
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Figure: Learning of the variational parameters for TABL’s mixing coefficient λ.
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Predictive distribution, interpreting predictive probabilities
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Figure: Class-probabilities and forecasts for a typical test example. Top-left,
panel: box-plots of class-probabilities. Bottom-left, panel: kernel density
estimates and means of class-probabilities. Top-right panel: class-probabilities per
class, highlighting those of maximum probability. Bottom-right panel: histogram
of forecasts’ labels.
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Predictive probability for the maximum-probability class

Low-to-mild confidence is quite common, p̂
(1)
i > 0.6 ≈ 10%− 15%.

High-confidence is even rarer, p̂
(1)
i > 0.9 ≈ 7%− 9%.

ESFs do not cross, and the difference is positive:
→ for the same (or greater) level of confidence, the number of
correctly classified samples is on average 5% higher for the correctly
classified samples than the miss-classified ones.
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Distribution of the scores I
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Figure: Distribution of VOGN’s predictive probabilities. Top row: distribution of
the class-probabilities for correctly-classified labels. Bottom row: distribution of
the class-probabilities for miss-classified labels.
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Distribution of the scores II

True positives:

When the model is correct, uncertainty on classes 2 and 3 is much
lower than the stationary-price case from the others.

When the model is correct about class-1 assignments, its confidence
is somewhat lower and the densities of the scores for whatever change
in price direction generally overlap.

→ Existence of patterns that are truly indicative of the direction of the
price movement, driving predictive probabilities close to one.
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Distribution of the scores III

False Positives:

Bias towards the majority class for correct labels 2 and 3

The same distribution on class 1 TPs almost identically replicates on
class 2 and 3 FPs: the model interprets certain patterns in the
features as remarkably non-indicative of the true class 2 and 3 labels
causing an over- flow of low scores for both of them.

By excluding a relevant probability mass on classes 2 and 3, this is
reversed in class 1, following a distribution being very close to that
observed on class 1 TPs.

→ This suggests that the model well-distinguishes patterns indicative of
classes 2 and 3 and, when these are absent, class 1 classification is
enforced.

Patterns indicative of classes 3 and 2 are causing false positives in
classes 2 and 3: typical features for classes 3 and 2 are observed for
mid-prices eventually moving in the opposite direction.
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(Distribution of the scores IV)

Similar conclusions also supported by further joint analyses on TP, TN,
FP, FN on a class-by-class basis.
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→ check the paper for an extensive discussion
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Performance measures

Any Precision Recall f1-score
Micro Macro Weighted Macro Weighted Macro Weighted

VOGN sample-by-sample
Mean 0.774 0.736 0.763 0.592 0.774 0.636 0.751
Median 0.774 0.736 0.763 0.592 0.774 0.636 0.751
Min 0.772 0.730 0.761 0.589 0.772 0.633 0.749
Max 0.776 0.743 0.766 0.596 0.776 0.638 0.752

VOGN based on forecasts’ function

Mean(Ŷi ) 0.772 0.731 0.761 0.591 0.772 0.633 0.749

Median(Ŷi ) 0.774 0.736 0.763 0.592 0.774 0.636 0.751

Mode(Ŷi ) 0.774 0.737 0.763 0.592 0.774 0.636 0.751

VOGN predictive distribution

Ŷpred 0.774 0.737 0.763 0.592 0.774 0.636 0.751

Ŷpred (med.) 0.774 0.737 0.763 0.592 0.774 0.636 0.751

Other optimizers
ADAM 0.772 0.767 0.770 0.570 0.772 0.619 0.741
MCD (mea.) 0.581 0.450 0.598 0.460 0.581 0.454 0.588
MCD (pred.) 0.638 0.500 0.630 0.492 0.638 0.495 0.634
SGD 0.687 0.556 0.660 0.505 0.687 0.522 0.667

Differences
Min - ADAM 0.0% -3.8% -0.9% 1.8% 0.0% 1.3% 0.7%

Ŷpred - ADAM 0.2% -3.1% -0.7% 2.2% 0.2% 1.6% 0.9%

Ŷpred - MCD (pred.) 13.6% 23.7% 13.3% 10.0% 13.6% 14.0% 11.7%

Ŷpred - SGD 8.7% 18.1% 10.4% 8.7% 8.7% 11.4% 8.3%
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ROC and Calibration curves I
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ROC and Calibration curves II

Single-class task Multi-class task
Class 1 Class 2 Class 3 Micro Macro

Area under the ROC curve
VOGN (pred.) 0.716 0.739 0.722 0.858 0.726
ADAM 0.697 0.665 0.742 0.851 0.702
MCD (pred.) 0.672 0.649 0.657 0.770 0.659
SGD 0.691 0.660 0.656 0.790 0.669
Expected calibration error
VOGN (pred.) -0.107 -0.014 -0.016 0.035 -0.046
ADAM -0.104 0.043 0.033 0.040 -0.009
MCD (pred.) -0.051 -0.016 -0.044 0.021 -0.039
SGD 0.153 -0.081 -0.072 -0.021 -0.032
Expected calibration distance
VOGN (pred.) 0.144 0.008 0.009 0.018 0.018
ADAM 0.146 0.021 0.018 0.018 0.030
MCD (pred.) 0.181 0.028 0.012 0.019 0.023
SGD 0.039 0.028 0.027 0.024 0.018

Table: Measures related to ROC and Calibration curves
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Class frequencies
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Differences are explainable under deeper analyses.

E.g. MCD alignment is not indicative of a genuine satisfactory
performance: for class 1 (classes 2 or 3) this arises from a lower
(comparable) TPR and comparable (lower) FPR with respect to the
other optimizers.
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Conclusion

A first econometric time-series application with BNN for mid-price
movement prediction.

Promising results showing that Bayesian methods in deep learning are
feasible, attractive, and useful for economic applications.

Discuss how to make use and interpret predictive probabilities,
providing insights on their implication in the decision process.

Analyses on the scores’ distribution and TPs, TNs, FPs, FNs allow to
grasp important insights into models’ learning.

Optimizer-specific analyses and cross-comparisons (VOGN and
ADAM are aligned, VOGN is slightly superior but enables a
probabilistic dimension for DL models).
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