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Introduction

* Deep Learning (DL) led to state-of-the-art results in numerous

financial applications

* Most approaches rely on price-related information only

* e.g., Open-Low-High-Close candles

* Human traders and analysts usually also take into account other

information sources
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Introduction

* Sentiment can be a valuable information source for various financial
analysis tasks

* e.g., sentiment expressed for cryptocurrencies in social media

* However, collecting this information and incorporating it into trading
pipelines is difficult and costly

* |n some cases, it might be almost impossible to have up to date information

(e.g., high frequency trading)
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Contribution e

e Can we exploit the sentiment information that has already been
collected to improve DL models for financial trading, while - at the
same time - operating these models without access to such

information?
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Proposed Method

* Simple, yet effective approach: Employ sentiment information to co-

supervise training

* Implemented through neural network distillation

* Train a model using sentiment information

* Distill the knowledge from the sentiment-aware model into a model that
observes only price-related inputs

* No need to have sentiment information available during inference!
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Input Features -

T
* Price Features: Xip) _ | Pt=L+1 ... bt 1] c R
Pt—L+2 Pt—1
where p; denotes the close price of an asset at time t.

* Sentiment Features: X,ES) = [St—L41y---, st]T c R,

where s; provides the sentiment at the time step ¢.
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Prediction Targets -

¢ Pt+1
* Prediction targets: 1, it Pt 1>9

lt — —1, lf Pitl 1 < 5 ]

Pt

0, otherwise
where ¢ denotes the threshold for

considering a price movement significant
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Neural Network Distillation

* Teacher 1: Trained on price to predict price movements
* Teacher 2: Trained on sentiment to predict price movements

e Student: Trained on price to predict price movements

* Distillation (i.e., training a student to mimic the teacher’s output distribution

mimicking through cross-entropy) from Teacher 1 and 2 simultaneously

* To enhance the effectiveness of distillation, we employ teacher ensembles instead

of single teacher models for the distillation process.



ARISTOTLE (.
4,07 J5) UNIVERSITY OF
A% THESSALONIKI Icussp

Experimental Evaluation -

* Experiments on the Bitcoin-USD currency pair

e Data collection period: from 2015 to 2020

* First four years used for training, last year for backtesting
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Experimental Evaluation -

* BDC Consulting dataset as sentiment source:

* Contains over 200,000 titles of financial articles that have been collected

from various online sites
* Used a pre-trained FinBERT model for sentiment extraction

* Sentiment encoded from -1 (negative) to 1 (positive)
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Model Architectures -

* Long Short Term Memory (LSTM)-based architecture for models with

price input
* MLP-based architecture for models with sentiment input

 Adam was used for the optimization, while models were trained for

100 epochs

e Ensemble: 5 teachers
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Experimental Evaluation

e Profit and Loss (PnL)-based evaluation
* 10 repeated runs for all experiments
* Baseline experiments: trained on price or sentiment modality

* Cross-distillation experiments: transferring from the oppositive modality
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Experimental Evaluation
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Method / Epoch 50 70 100

Price - Baseline 0.198 | -0.233 | -0.398
Sentiment - Baseline 0.148 | -0.348 | -0.235
Price - Cross Distillation 0.946 | 0.483 0.048
Sentiment - Cross Distillation | 1.246 | 1.002 0.923
Price - Proposed 1.334 | 1.354 | 1.155
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Conclusions

* Presented a method that exploits sentiment information as a source of
additional supervision during the training process, improving the accuracy of

the developed models

* Future research directions:

 Distillation using other modalities, e.g., news articles, forecasts, etc.,

e Other ways of employing sentiment to supervise the training process
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