

SENTIMENT-AWARE DISTILLATION FOR BITCOIN TREND FORECASTING UNDER PARTIAL OBSERVABILITY

Georgios Panagiotatos, Nikolaos Passalis, Avraam Tsantekidis, and Anastasios Tefas

E-mails: {panagiotga, passalis, avraamt, tefas}@csd.auth.gr

Computational Intelligence and Deep Learning Group (CIDL), AIIA Lab.

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

(icassp

Structure

- Introduction
- Proposed Method
- Experimental Evaluation
- Conclusions

Introduction

- **Deep Learning (DL)** led to state-of-the-art results in numerous financial applications
- Most approaches rely on price-related information only
 - e.g., Open-Low-High-Close candles
- Human traders and analysts usually also take into account other information sources

Introduction

- **Sentiment** can be a valuable information source for various financial analysis tasks
 - e.g., sentiment expressed for cryptocurrencies in social media
- However, collecting this information and incorporating it into trading pipelines is difficult and costly
 - In some cases, it might be almost impossible to have up to date information (e.g., high frequency trading)

Contribution

 Can we exploit the sentiment information that has already been collected to improve DL models for financial trading, while - at the same time - operating these models without access to such information?

Proposed Method

- Simple, yet effective approach: **Employ sentiment information to co-supervise training**
- Implemented through neural network distillation
 - Train a model using sentiment information
 - Distill the knowledge from the sentiment-aware model into a model that observes only price-related inputs
 - No need to have sentiment information available during inference!

Input Features

• Price Features:

$$\mathbf{x}_{t}^{(p)} = \left[\frac{p_{t-L+1}}{p_{t-L+2}} - 1, \dots, \frac{p_{t}}{p_{t-1}} - 1 \right]^{T} \in \mathbb{R}^{L},$$

where p_t denotes the close price of an asset at time t.

• Sentiment Features:

$$\mathbf{x}_t^{(s)} = \left[s_{t-L+1}, \dots, s_t\right]^T \in \mathbb{R}^L,$$

where s_t provides the sentiment at the time step t.

Prediction Targets

• Prediction targets:

$$l_{t} = \begin{cases} 1, & \text{if } \frac{p_{t+1}}{p_{t}} - 1 > \delta \\ -1, & \text{if } \frac{p_{t+1}}{p_{t}} - 1 < \delta \end{cases},$$

$$0, & \text{otherwise}$$

where δ denotes the threshold for considering a price movement significant

Neural Network Distillation

- **Teacher 1:** Trained on price to predict price movements
- **Teacher 2:** Trained on sentiment to predict price movements
- Student: Trained on price to predict price movements
 - Distillation (i.e., training a student to mimic the teacher's output distribution mimicking through cross-entropy) from Teacher 1 and 2 simultaneously
 - To enhance the **effectiveness of distillation**, we employ teacher ensembles instead of single teacher models for the distillation process.

- Experiments on the Bitcoin-USD currency pair
- Data collection period: from 2015 to 2020
 - First four years used for training, last year for backtesting

- BDC Consulting dataset as sentiment source:
 - Contains over 200,000 titles of financial articles that have been collected from various online sites
 - Used a pre-trained FinBERT model for sentiment extraction
 - Sentiment encoded from -1 (negative) to 1 (positive)

Model Architectures

- Long Short Term Memory (LSTM)-based architecture for models with price input
- MLP-based architecture for models with sentiment input
- Adam was used for the optimization, while models were trained for 100 epochs
- Ensemble: 5 teachers

- Profit and Loss (PnL)-based evaluation
 - 10 repeated runs for all experiments
 - Baseline experiments: trained on price or sentiment modality
 - Cross-distillation experiments: transferring from the oppositive modality

Method / Epoch	50	70	100
Price - Baseline Sentiment - Baseline	0.198	-0.233 -0.348	-0.398 -0.235
Price - Cross Distillation	0.946	0.483	0.048
Sentiment - Cross Distillation Price - Proposed	1.246	1.002 1.354	1.155

Conclusions

 Presented a method that exploits sentiment information as a source of additional supervision during the training process, improving the accuracy of the developed models

Future research directions:

- Distillation using other modalities, e.g., news articles, forecasts, etc.,
- Other ways of employing sentiment to supervise the training process

Acknowledgements

This work has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (project code: T2EDK-02094)

Find more about DeepFinance project at <u>deepfinance.csd.auth.gr</u>

Thank you!

