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Introduction

• Automated Financial Trading with Deep Learning

• The use of Deep Learning (DL) models aided the prediction of price movements

• Based on the forecast direction, a trader can make an informed decision about whether to take 

a long or short position

• Challenges

• Frequently, the generation of supervised labels is necessary

• This task might be a challenge due to the unpredictability of the financial markets



Introduction

• Deep Reinforcement Learning in Financial Trading

• Deep Reinforcement Learning (DRL) is an effective approach that addresses the 

challenges associated with supervised learning limitations

• The integration with DL has enabled the direct optimization of trading policies 

to maximize expected profits even in the presence of volatility and uncertainty



Introduction

• Reward Approaches

• Profit and Loss (P&L): most DRL systems for financial trading use P&L as a reward function

• Sharpe ratio: captures the risk-related component of an agent’s performance, and is used to

evaluate a portfolio’s risk-adjusted performance

• Drawbacks

• Profit and Loss (P&L): Doesn’t take into account the risk associated with the returns

• Sharpe ratio: Limited samples are available during the training phase. To perform the

calculation, it is necessary to consider the returns over a long period of time



Introduction

• Goal: Incorporating the Sharpe ratio into the reward function of a DRL

agent aims to enhance the overall performance of the portfolio by 

mitigating the risk associated with the agent's decisions



Proposed Method



Proposed Method

• Our study outlines a method for integrating the Sharpe ratio into the 

training procedure of a DRL agent

• A dynamic window is proposed which adjusts its size based on the 

returns obtained within an RL episode. Consequently, an estimation 

of the Sharpe ratio can be incorporated into the reward function



Proposed Method

• PnL reward

The profit-based reward is defined as:

𝑡

𝑝𝑐 𝑡 − 𝑝𝑐(𝑡 − 1)
𝑧 =

𝑝𝑐(𝑡 − 1)

which is also referred to as the change of the close price 𝑝𝑐.

𝑡

𝑧𝑡

𝑟(𝑃𝑛𝐿) =
൞−𝑧𝑡

𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑔𝑜𝑖𝑛𝑔 𝑙𝑜𝑛𝑔

𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑔𝑜𝑖𝑛𝑔 𝑠ℎ𝑜𝑟𝑡
0 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 ℎ𝑎𝑠 𝑎 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

where 𝑧𝑡 is the return change and is defined as:



Proposed Method

With the return definition, the profit-based reward can be written as:

𝑡
𝑟(𝑃𝑛𝐿) = 𝑒 · 𝑧𝑡 𝑡

Where 𝑒𝑡 is the current market position and 𝑒𝑡 ∈ 1, 0,−1 = {long, neutral, short}

When the agent changes position is obligated to pay an extra fee. That is called the commission, in which case an additional

reward is formulated as:

𝑡 𝑡 𝑡−1𝑟(𝑓𝑒𝑒) = −𝑐 · |𝑒 − 𝑒 |

where 𝑐 denotes the commission. The total PnL reward can be defined as:

𝑟(𝑡𝑜𝑡𝑎𝑙) = 𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒)
𝑡 𝑡 𝑡



Proposed Method

• PnL and Sharpe ratio reward

Reward, based on the approximated Sharpe ratio is defined as:

𝑟
(𝑠𝑟) 𝐸[𝒛]

𝑉𝑎𝑟[𝒛]
= · 𝛼, 𝑡 ∈ 𝑤,… ,𝑚 , 𝒛 = (𝑧0 ,… , 𝑧𝑡 )

where 𝑤 = 𝑚/2, 𝒛 is a vector with the returns, and 𝛼 is a constant value.

The total PnL and Sharpe ratio reward is defined as:

𝑡
𝑟(𝑡𝑜𝑡𝑎𝑙) = ቐ𝑡 𝑡

𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒), 𝑡 < 𝑤

𝑡 𝑡 𝑡
𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒) + 𝑟(𝑠𝑟),𝑓𝑜𝑟 𝑡 ≥ 𝑤

Returns during  
a DRL episode

Number
of steps

The point at

which 𝑟 𝑠𝑟 is𝑡

incorporated



Proposed Method

• Proposed

The total reward of the proposed scheme is defined as:

𝑡
𝑟(𝑡𝑜𝑡𝑎𝑙) =

𝑡 𝑡
𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒), 𝑓𝑜𝑟 𝑡 < 𝑤

𝑓𝑜𝑟 𝑡 = 𝑤

𝑓𝑜𝑟 𝑡 > 𝑤

𝑓𝑜𝑟 𝑡 > 𝑤

𝑡 𝑡 𝑡
𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒) + 𝑟(𝑠𝑟),

𝑡 𝑡 𝑡
𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒) + 𝑟(𝑠𝑟),

𝑡 𝑡−1
𝑖𝑓 𝑟(𝑠𝑟) > 𝑟(𝑠𝑟),

𝑡 𝑡 𝑡
𝑟(𝑃𝑛𝐿) + 𝑟(𝑓𝑒𝑒) − 𝑟 𝑠𝑟 ,

𝑡𝑖𝑓 𝑟 𝑠𝑟
𝑡−1

< 𝑟(𝑠𝑟),



Experimental Evaluation



Dataset

• Crypto trading data

• The dataset provided by SpeedLab AG from 2017-08-17 up to 2022-02-12.

• Training set from 2017-08-17 to 2021-03-15, Test set from 2021-03-15 to 2022-02-12

• In total: 439.737 candles, where the train/test candles are 327.596 and 112.141 candles, respectively.

• 14 currency pairs such as the BTC/BUSD, BTC/USDT, and ETH/USDT among others

• The Open-High-Low-Close (OHLC) price level technique was used to preprocess the data. More specifically, OHLC values are:

• open price (the first traded price of the set interval)

• highest and lowest traded prices within the interval

• close price (the last price that a trade did occur during the interval)

• The minute-price candles are resampled to hour candles



Input Features

1. 𝑥𝑡 ,
1

= 𝑝𝑐 𝑡 −𝑝_𝑐 𝑡−1

𝑝𝑐 𝑡−1

2. 𝑥𝑡 ,
2

= 𝑝ℎ 𝑡 −𝑝ℎ 𝑡−1

𝑝ℎ 𝑡−1

3. 𝑥𝑡 ,
3

= 𝑝𝑙 𝑡 −𝑝𝑙 𝑡−1

𝑝𝑙 𝑡−1

4. 𝑥𝑡,4 =
𝑝ℎ 𝑡 −𝑝𝑐 𝑡

𝑝

5. 𝑥𝑡 ,
5

= 𝑝𝑐 𝑡 −𝑝𝑙 𝑡

𝑝𝑐 𝑡

6. time-related features are created, including 

day, month, week, and year features.

13

The described features are concatenated into a 

feature vector 𝒙𝑡 ∈ ℝ for each time 𝑡.



DRL setup characteristics

• The DRL agent is trained using the Proximal Policy Optimization (PPO) approach

• Neural Network architecture is Long-Short Term Memory

• The number of steps that an DRL episode consists of is equal to 100

• Each experiment is executed 10 times, with each instance using a different random seed

• The PnLs presented, are averaged throughout the 10 experiments as well as the Annualized Sharpe ratios



Proposed Reward Evaluation

𝑹𝒆𝒘𝒂𝒓𝒅 𝒕𝒚𝒑𝒆 𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅 𝑺𝒉𝒂𝒓𝒑𝒆 𝒓𝒂𝒕𝒊𝒐
𝑴𝒐𝒏𝒕𝒉𝒍𝒚𝑹𝒆𝒕𝒖𝒓𝒏𝒔

𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅 𝑺𝒉𝒂𝒓𝒑𝒆 𝒓𝒂𝒕𝒊𝒐
𝑯𝒐𝒖𝒓𝒍𝒚𝑹𝒆𝒕𝒖𝒓𝒏𝒔

PnL 1.462 ± 0.055 2.374 ± 0.079

PnL + Sharpe ratio 1.499 ± 0.060 2.484 ± 0.090

Proposed 1.617 ± 0.056 2.641 ± 0.083



Proposed Reward Evaluation



Conclusion



Conclusion

Developed and evaluated a Sharpe ratio-based reward shaping scheme for training 

DRL agents that are capable of decreasing the risk that often occurs in agents’ 

trading decisions and improving the overall performance of a portfolio
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